La legge di bilancio 2023, che ha introdotto una disposizione su questi componenti di reddito che mancava dal 2016, è entrata in vigore il 1° gennaio 2023, mentre i modelli dichiarativi accolgono di dati relativi al periodo d’imposta 2022.
Occorre, dunque, comprendere in quali casi la dichiarazione debba monitorare le operazioni intercorse con Paesi black list.
Operazioni con Paesi Black List: le novità del modello di dichiarazione 2023
Tra le novità contenute nel modello REDDITI (PF, SP e SC) 2023 vi è quella che attiene alla deducibilità nel limite del valore normale delle spese con soggetti in Stati non cooperativi (Paesi Black List).
A tal fine, nei quadri RF e RG sono state inserite apposite variazioni in aumento e in diminuzione al fine di tenere conto dei commi da 9-bis a 9-quinquies dell’articolo 110 del Tuir relativi alla deducibilità delle spese e degli altri componenti negativi derivanti da operazioni, che hanno avuto concreta esecuzione, intercorse con imprese residenti ovvero localizzate in Paesi o territori non cooperativi a fini fiscali.
Nello specifico, l’articolo 1, commi 84-86, legge 29 dicembre 2022, n. 197 stabilisce che i costi e gli altri componenti negativi di reddito per operazioni intercorse con imprese e professionisti situati in Paesi black list[1] sono deducibili:
- integralmente (fatte salve altre limitazioni di legge) nel limite del valore normale[2], a condizione che sia dimostrato che le operazioni hanno avuto concreta esecuzione;
- per la parte eccedente il valore normale a condizione che venga dimostrato che le operazioni poste in essere hanno avuto concreta esecuzione e che rispondono a un effettivo interesse economico.
In assenza di questa prova l’eccedenza risulta indeducibile.
Esempio: SNC con operazioni con soggetti siti in paradisi fiscaliSi ponga il caso di una Snc che ha sostenuto spese per operazioni intercorse con soggetti situati nei Paesi black list Ue (ad esempio, Panama) per 1.000 euro. Il valore normale dell’operazione è pari a 900 euro: entro questa soglia la deducibilità è integrale, se viene dimostrato ch |